

Máster Universitario en Biotecnología

Facultad de Ciencias

E-mail: ciencias@uca.es

Ficha de asignatura 2018-2019

DATOS DE ASIGNATURA					
MODELIZACIÓN MOLECULAR: APLICACIÓN A BIOMOLÉCULAS					
Código	270002				
Asignatura:	MODELIZACIÓN MOLECULAR: APLICACIÓN A BIOMOLÉCULAS	Créditos teóricos:	4		
Título:	Máster en Biotecnología	Créditos prácticos:			
Módulo	COMÚN	Créditos ECTS totales:	4		
Materia	ASPECTOS TRANSVERSALES Y METODOLÓGICOS	Tipo: Obligatoria			
Departamento	CIENCIA DE LOS MATERIALES E INGENIERÍA METALÚRGICA Y QUÍMICA INORGÁNICA	Modalidad:	PRESENCIAL		
	QUÍMICA FÍSICA				
	BIOMEDICINA, BIOTECNOLOGÍA Y SALUD PÚBLICA				
Semestre	1º	Curso	1º		
Requisitos previos Requisitos previos					
No Procede					
Recomendacione					
No Procede					

Profesorado

Nombre	Apellidos	Categoría	Coordinador
Andrés	García Algarra	Profesor Ayudante Doctor	Si
Jesús	Ayuso Vilacides	Catedrático de Escuela Universitaria	No
Carlos	Pendón Meléndez	Profesor Titular de Universidad	No
Mónica	Oliva Domínguez	Profesora Titular de Universidad (Profesora externa)	No

Competencias (cumplimentar según Memoria del Máster)

Identificador	Competencia	Tipo
CB6	Poseer y comprender conocimientos que aporten una base u oportunidad de ser originales en el desarrollo y/o aplicación de ideas, a menudo en un contexto de investigación	Básica
CB9	Que los estudiantes sepan comunicar sus conclusiones (y los conocimientos y razones últimas que las sustentan) a públicos especializados y no especializados de un modo claro y sin ambigüedades.	Básica
CG2	Demostrar una buena capacidad de acceder por búsquedas electrónicas en bases de datos a la literatura científico-técnica	General
CE1	Describir, cuantificar, analizar y evaluar de forma crítica los resultados experimentales obtenidos de forma autónoma, proponer hipótesis y ponerlas a prueba.	Específica
CE3	Aplicar aspectos avanzados de la metodología analítica para la identificación y cuantificación biomolecular	Específica
CE7	Analizar e interpretar los resultados obtenidos con el objeto de obtener conclusiones biotecnológicas relevantes a partir de los mismos	Específica
CE11	Conocer los aspectos básicos de la modelización molecular y su aplicación a biomoléculas.	Específica
CT1	Utilizar las Tecnologías de Información y Comunicación (TICs) como una herramienta para la expresión y la comunicación, para el acceso a fuentes de información, como medio de archivo de datos y documentos, para tareas de presentación, para el aprendizaje, la investigación y el trabajo cooperativo.	Transversal

Resultados del aprendizaje

	Resultation del aprenaizaje
Identificador	Resultado
R1	Aplicar los principios básicos de modelización molecular a estructuras moleculares de pequeño tamaño (sustrato, fármaco), mediano (polipéptidos, polinucleótidos) y otras biomoléculas de mayor tamaño (proteínas, ácidos nucleicos), así como analizar las posibles interacciones intermoleculares.
R2	Interpretar los modelos tridimensionales generados por ordenador sobre las estructuras anteriores, así como predecir propiedades moleculares.
R3	Utilizar métodos predictivos dirigidos a elucidar el plegamiento de cadenas polipeptídicas y proteínas.
R4	Conocer los métodos comparativos de cadenas polipeptídicas.
R5	Integrar los conocimientos de modelización molecular al análisis y/o diseño de procesos biotecnológicos.

Actividades formativas (cumplimentar según Memoria del Máster)

Actividad formativa	Horas	Grupo	Detalle	Competencias a desarrollar
1 Clases teóricas	14	Único	Presencial	CB1, CB9, CG2, CE1, CE3, CE7, CE11, CT1
2 Clases prácticas	18	Único	Presencial	CB1, CB9, CG2, CE1, CE3, CE7, CE11, CT1
3 Trabajo no presencial	34	Individual	No presencial	CB1, CB9, CG2, CE1, CE3, CE7, CE11, CT1
6 Trabajo autónomo del estudiante	34	Individual	No presencial	CB1, CB9, CG2, CE1, CE3, CE7, CE11, CT1
7 Actividades de evaluación y autoevaluación	2	Único	Presencial	CB1, CB9, CG2, CE1, CE3, CE7, CE11, CT1

Total de actividades formativas de docencia presencial: 32

Total de otras actividades: 68 Total de la asignatura: 100

Criterios generales de evaluación

- La adquisición de competencias se valorará tanto a través de un examen final con cuestiones y
 problemas sobre los contenidos abordados en las distintas actividades formativas realizadas,
 como a través del seguimiento de las actividades realizadas, que incluirán la presentación de
 trabajos de manera oral (usando los medios audiovisuales que sean necesarios) y escrita.
- Los alumnos tendrán derecho a una prueba de evaluación global, en las dos convocatorias extraordinarias posteriores a la convocatoria ordinaria (la del cuatrimestre en el que se imparte). Esta modalidad de evaluación deberá ser solicitada en los plazos que el Centro determine. Los criterios de evaluación y tipo de pruebas a realizar serán determinados por el equipo docente de la asignatura. Aquellos alumnos que la soliciten serán informados con suficiente antelación.

Procedimientos de evaluación (cumplimentar según Memoria del Máster)

Tarea/actividad	Medios, técnicas e instrumentos	Evaluador/es	Competencias a evaluar
Presentación de trabajos y actividades		Profesores	CB1, CB9, CG2, CE1, CE3, CE7, CE11, CT1
Realización de examen final		Profesores	CB1, CB9, CG2, CE1, CE3, CE7, CE11, CT1

Procedimiento de calificación (cumplimentar según Memoria del Máster)

Será obligatoria la realización de las tareas de Presentación de trabajos y otras actividades que se propongan. Para la calificación final en las distintas convocatorias se considerará la nota correspondiente a las actividades y presentación de trabajos (60%) y a la prueba escrita final (40%). Para superar la evaluación de la asignatura, se tendrá que obtener una puntuación superior a 3 sobre 10 en cada una de las partes. La calificación obtenida en las tareas de Presentación de trabajos y otras actividades tendrá validez hasta la convocatoria de septiembre del curso en que se hayan realizado.

Aquellos alumnos que lo deseen podrán solicitar una evaluación global de la asignatura, en las convocatorias extraordinarias, de acuerdo al protocolo que tenga el centro.

Descripción de contenidos

Descripción de contenidos	Competencias	Resultados del
	relacionadas	aprendizaje
		relacionados
Métodos para la determinación experimental de estructuras	CB1, CB9, CG2,	R1, R2, R3, R4,
moleculares. Bases de datos estructurales. Programas para la	CE1, CE3, CE7,	R5
visualización de estructuras tridimensionales.	CE11, CT1	

Métodos computacionales para la optimización de estructuras moleculares. Niveles de cálculo. Métodos DFT. Análisis conformacional. Utilización del programa Gaussian.

Estudio termodinámico y cinético de las interacciones intermoleculares. Cálculo de superficies de energía potencial y estados de transición. Efecto del disolvente.

Métodos computacionales para la predicción de propiedades moleculares (IR, Uv-Vis, CD).

Estructura de las proteínas. Métodos predictivos de análisis de polipéptidos y proteínas: sitios de modificación, localización, estructuras secundarias, accesibilidad del disolvente, motivos y dominios funcionales. Predicción de estructuras de proteínas, visualización y evaluación de la estructura. Análisis de la similitud entre proteínas.

Interacciones intermoleculares de las proteínas e interacciones proteína-ácido nucléico. Modelos tipo ligando-receptor. Acoplamiento molecular (docking). Dinámica molecular.

Bibliografía y fuentes electrónicas

Bibliografía básica

Título: Essentials of Computational Chemistry: Theories and Models, 2nd edition

Autores: Christopher J. Cramer Editorial: John Wiley & Sons, Ltd

Título: A Chemist's Guide to Density Functional Theory, 2nd edition

Autores: Wolfram Koch, Max C. Holthausen

Editorial: John Wiley & Sons, Ltd

Título: Autores: Editorial:

Bibliografía específica

Foresman, J.B.; Frisch, Æ. Exploring Chemistry with Electronic Structure Methods: A Guide to Using Gaussian, 2nd ed.; Gaussian, Inc. 1996. ISBN: 978-0963676931

Comentarios/observaciones adicionales

Mecanismos de control y seguimiento

- Encuestas de satisfacción realizadas por el alumnado
- Reuniones de Coordinación del Profesorado