

GUÍA DOCENTE DE LA ASIGNATURA

Curso 2025 / 2026 10/07/2025

Página 1 de 3

DESCRIPCIÓN DE LA ASIGNATURA

Grado/Máster en: Máster Universitario en Ingeniería Química por la Universidad de Málaga. Plan 2014

Centro: Facultad de Ciencias

Asignatura: Diseño de Redes Intercambiadoras de Materia para la Prevención de la Contaminación (UMA)

Código: 112
Tipo: Optativa

Materia: BLOQUE OPTATIVO

Módulo: INGENIERÍA DE PROCESOS Y PRODUCTOS

Experimentalidad: 69 % teórica y 31 % práctica

 Idioma en el que se imparte:
 Español

 Curso:
 1

 Semestre:
 2º

 Nº Créditos:
 3

 Nº Horas de dedicación del estudiantado:
 75

 Tamaño del Grupo Grande:
 72

 Tamaño del Grupo Reducido:
 30

Página web de la asignatura:

EO	TITDO	DOCENTE	

COORDINADOR/A				
Nombre y Apellidos Mail	Teléfono Laboral	Despacho	Horario Tutorías	
CARLOS VEREDA ALONSO cvereda@uma.es	952131917	DIQq1 Dpto. Ingenierí Química (Módulo de Química, planta 1) - FAC. DE CIENCIAS	a	

Departamento: INGENIERÍA QUÍMICA **Área:** INGENIERÍA QUÍMICA

RESTO EQUIPO DOCENTE				
Nombre y Apellidos	Mail	Teléfono Laboral	Despacho	Horario Tutorías
CESAR GOMEZ LAHOZ	lahoz@uma.es	952131917	DIQq1 Dpto. Ingenierí Química (Módulo de Química, planta 1) - FAC. DE CIENCIAS	a

RECOMENDACIONES Y ORIENTACIONES

Dado el aparato de cálculo que se va a emplear, es recomendable tener experiencia en el uso de hojas de cálculo y nociones de programación.

CONTEXTO

Además de otras ventajas, la integración de procesos se presenta como una herramienta adecuada para la prevención de la contaminación en una planta química. En este sentido, los sistemas de integración de materia se dedican especialmente a la reducción del origen de la contaminación y al reciclado, reúso y segregación de corrientes que contienen una carga contaminante dentro de un proceso. En esta asignatura se estudiará el diseño de las diferentes estrategias que se aplican para reducir esa contaminación. Principalmente se tratará el reciclado directo y las redes de intercambio de materia, empleando para su diseño técnicas basadas en el análisis del punto de pliegue (Pinch analysis), tanto desde un punto de vista gráfico como algebraico.

En definitiva, con objeto de separar el contaminante presente en varias corrientes materiales de una planta, se estudiará el diseño la red óptima formada por varias unidades de separación, que pueden estar basadas en tecnologías de separación diferentes y que, por tanto, pueden emplear diferentes agentes de separación másicos.

COMPETENCIAS / RESULTADOS DE APRENDIZAJE

CONTENIDOS DE LA ASIGNATURA

Introducción a las estrategias de integración de masas

Estrategias de reciclado/reúso directo

Diseño de redes de intercambio de materia

ACTIVIDADES FORMATIVAS

Actividades presenciales

Actividades expositivas

Lección magistral En aula de informática, o normal con enchufes suficientes para portátiles, o teledocencia síncrona

GUÍA DOCENTE DE LA ASIGNATURA

Curso 2025 / 2026 10/07/2025 Página 2 de 3

Prácticas en aula informática En aula de informática, o normal con enchufes suficientes para portátiles, o teledocencia síncrona

Otras actividades presenciales

Otras actividades presenciales En aula de informática, o normal con enchufes suficientes para portátiles, o teledocencia síncrona

Actividades no presenciales

Actividades prácticas

Resolución de problemas

Otras actividades prácticas no presenciales

Estudio personal

Estudio personal

ACTIVIDADES DE EVALUACIÓN

Actividades de evaluación no presenciales

Actividades de evaluación del estudiantado

Otras actividades no presenciales eval.estudiantado

Actividades de evaluación presenciales

Actividades de evaluación del estudiantado

Examen final

Realización de trabajos y/o proyectos

RESULTADOS ESPECÍFICOS DEL APRENDIZAJE

Resultados del Aprendizaje:

- Tener una visión global del modo en el que pueden integrarse diferentes operaciones de separación.
- Adquirir los conceptos y técnicas relacionadas con el análisis del punto de pliegue (Pinch analysis)
- Conocer las técnicas que se utilizan para maximizar la reutilización y regeneración del agua en la industria química promoviendo su uso sostenible.

Criterios para su evaluación:

Valoración media ponderada de los ejercicios y cuestiones propuestas, teniendo en cuenta la dificultad de resolución de los mismos.

SISTEMAS DE EVALUACIÓN

A lo largo del curso se realizará una prueba escrita en aula de informática (50%) y la presentación de una actividad on-line (50%)

La calificación final del curso será una media ponderada de las obtenidas en las dos actividades citadas.

Al examen ordinario se podrán presentar todos los alumnos, incluyendo a los que han superado la asignatura durante el curso.

El examen ordinario constará de dos bloques, correspondientes a las dos actividades de evaluación realizadas durante el curso.

El alumno que desee conservar la calificación de un bloque obtenida durante el curso deberá no entregar dicha parte en el examen ordinario.

La evaluación de la convocatoria extraordinaria estará basada en una prueba única (examen final de la convocatoria extraordinaria)

BIBLIOGRAFÍA Y OTROS RECURSOS

Básica

El-Halwagi, M.M. (Ed.), 1997. Pollution Prevention through Process Integration. Academic Press, San Diego.

El-Halwagi, M.M., 2006. Process Systems Engineering. Academic Press.

Klemes, J., Friedler, F., Bulatov, I., Varbanov, P., 2010. Sustainability in the Process Industry: Integration and Optimization: Integration and Optimization, Green manufacturing & systems engineering. McGraw-Hill Education.
Seider, W.D., 2004. Product and process design principles: synthesis, analysis, and evaluation, 2nd ed. ed. John Wiley, New York

Smith, R., 2005. Chemical process: Design and integration. John Wiley & Sons, England.

DISTRIBUCIÓN DEL TRABAJO DEL ESTUDIANTADO				
ACTIVIDAD FORMATIVA PRESENCIAL				
Descripción	Horas	Grupo grande	Grupos reducidos	
Lección magistral En aula de informática, o normal con enchufes suficientes para portátiles, o teledocencia síncrona	5.5	✓		
Prácticas en aula informática En aula de informática, o normal con enchufes suficientes para portátiles, o teledocencia síncrona	15	/		
Otras actividades presenciales En aula de informática, o normal con enchufes suficientes para portátiles, o teledocencia síncrona	2	/		
TOTAL HORAS ACTIVIDAD FORMATIVA PRESENCIAL	22.5			

ACTIVIDAD FORMATIVA NO PRESENCIAL

Descripción Horas

GUÍA DOCENTE DE LA ASIGNATURA

Curso 2025 / 2026 10/07/2025 Página 3 de 3

Descripción	Horas	
Resolución de problemas	10	
Otras actividades prácticas no presenciales	20	
Estudio personal	37.5	
TOTAL HORAS ACTIVIDAD FORMATIVA NO PRESENCIAL	45	
TOTAL HORAS ACTIVIDAD EVALUACIÓN	7.5	
TOTAL HORAS DE TRABAJO DEL ESTUDIANTADO	75	